Comments

Comment on "Characterization of Sodium Cobalt Oxides Related to P3-Phase Superconductor"

In a recent article, Takada et al.¹ reported characterization of P3 phase-related sodium cobalt oxides and stated that the superconducting bilayer-hydrate phase was obtained by the ion exchange between Na⁺ and H_3O^+ , which resulted in the insertion of H_3O^+ in the host lattice on the basis of their Raman spectra data. They claimed that the lower-than-expected oxidation state of Co was due to the reductive insertion of H_3O^+ by using the same argument for the P2 phase superconductor.² However, careful Co K-edge X-ray absorption spectroscopy measurements on the Na_{0.3}CoO₂·yH₂O (y = 0, 0.6, 1.2) materials indicate that there is no Co valence change upon hydration.³ These results undermine the postulation of H_3O^+ participating in the charge balance of the system.

In addition, to transform 0.5 g of α -Na_{0.7}CoO₂ (4.389 \times 10⁻³ mol) into P3 anhydrous Na_{0.42}CoO₂ and P3 bilayer-hydrate phase Na_{0.35}(H₃O)_{0.17}(H₂O)_{1.22}CoO₂ would require 7.461 \times 10⁻⁴ mol (calculated from 0.17 mol in 1 mol of P3 bilayer-hydrate phase) of H₃O⁺ ions to get into the lattice or 3.072 \times 10⁻⁴ mol (calculated from a 0.07 mol decrease of Na⁺) of H₃O⁺ ions to exchange with Na⁺. However, the concentration of H₃O⁺ in pure water is 1.0 \times 10⁻⁷ mol/L at 25 °C, and the mole number of the H⁺ would be 10⁻⁸ mol if using a volume of 100 mL of pure water in the immersion step. To obtain the superconducting bilayer-hydrate phase by ion exchange between H₃O⁺ and Na⁺ at least 3072 L of pure water would be needed to do the job!

Acknowledgment. This work was supported by National Science Council of R.O.C. under Grant NSC-95-2112-M-018-006-MY3.

Chia-Jyi Liu

Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan, R.O.C Received June 2, 2007

CM071486M

Takada, K.; Osada, M.; Izuma, F.; Sakurai, H.; Takayama-Muromachi, E.; Sasaki, T. *Chem. Mater.* **2005**, *17*, 2034–2040.

⁽²⁾ Takada, K.; Fukuda, K.; Osada, M.; Nakai, I.; Izumi, F.; Dilanian, R. A.; Kato, K.; Takata, M.; Sakurai, H.; Takayama-Muromachi, E.; Sasaki, T. *Mater. Chem.* 2004, 14, 1448–1453.

⁽³⁾ Poltavets, V.; Croft, M.; Greenblatt, M. Phys. Rev. B 2006, 74, 125103-125110.